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Abstract—Transformers have become a predominant machine
learning workload, they are not only the de-facto standard
for natural language processing tasks, but they are also being
deployed in other domains such as vision and speech recognition.
Many of the transformer-based applications are real-time systems
such as machine translation and web search. These real time
systems often come with strict end-to-end inference latency re-
quirements. Unfortunately, while the majority of the transformer
computation comes from matrix multiplications, transformers
also include several non-linear components that tend to become
the bottleneck during an inference. In this work, we accelerate
the inference of BERT models on the tensor streaming processor.
By carefully fusing all the nonlinear components with the matrix
multiplication components, we are able to efficiently utilize the
on-chip matrix multiplication units resulting in a deterministic
tail latency of 130 µs for a batch-1 inference through BERT-base,
which is 6× faster than the current state-of-the-art.

I. INTRODUCTION

Transformer-based models [1] have revolutionized various

natural language processing (NLP) applications; state-of-the-

art results in machine translation [2], web search [3], question

and answering [4] almost exclusively use transformers. In

addition to dominating the NLP domain, transformers are

starting to penetrate other domains such as computer vision [5]

and speech recognition [6]. Many of the production-level

transformer-based models are real-time systems where users

interact with a service and expect a response in real-time,

which enforces a strict latency requirement during inference.

BERT [7] is a popular transformer model that is widely used

in the industry: Microsoft [8] and Google [3] search engines

rely on BERT models; Twitter [9] content moderation pipeline

also includes a BERT model; and Roblox [10] uses BERT as

part of their text classification and named entity recognition

pipelines. In many services, an inference through the BERT

model is usually one component that feeds other downstream

tasks before returning an answer to the user. As such, to guar-

antee a reasonable service time it is important to ensure that the

observed (average) latency and tail latency of the inference is

under the strict latency budget available to the entire pipeline.

In addition, any reduction in the inference latency would relax

the timing constraints for the other components in the rest of

the pipeline.

The increasing demand for compute by machine learning

applications has resulted in a large number of domain-specific

accelerator chips. While most of these new chips share the

objective of maximizing their compute capabilities per silicon

area, preliminary results suggest that each chip has a unique

advantage. For example: Cerebras Wafer Scale Engine has

shown that it is able to accelerate training large-scale mod-

els [11] compared to GPUs, Tenstorrent’s Grayskull focuses

on conditional computing (the ability to dynamically prune

parts of the model based on the input) [12], and Groq’s

deterministic Tensor Streaming Processor (TSP) has shown

promising results for batch-1 inference [13].

The goal of this work is to accelerate a BERT model in-

ference with the objective of minimizing both average latency

and latency variation (including tail latency). We exploit the

Groq TSP [13] hardware accelerator that provides high batch-

1 performance while supporting deterministic execution to

minimize latency variation. Our work shows that predictable

performance can be achieved, compared to a modern GPU,

while also achieving significantly lower average latency. In

particular, the contribution of this work includes the following:

• give an overview of the TSP microarchitecture and pro-

gramming model,

• efficiently map the computation of BERT to the TSP’s

vector and matrix execution units and its streaming ar-

chitecture,

• describe the implementation of the BERT model using the

GroqAPI framework provided as part of Groq software

developer kit (SDK), and

• characterize the model’s performance on thousands of

inferences by measuring the observed end-to-end latency

and distribution of response times.

The remainder of this paper is organized to describe the

BERT model architecture and its functional mapping and

implementation using the GroqAPI programming framework.

To show statistically significant results, we perform thousands

of inferences on the TSP to measure its response latency and

distribution of response times. We compare our approach to

other related work and summarize our results by showing a 6×
reduction in execution time compared to the same model on a

current-generation GPU while providing deterministic latency

and minimizing tail latency.
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Fig. 1. Simplified view of parts of the TSP architecture.

II. BACKGROUND

A. BERT

BERT [7] architecture is almost identical to the encoder

stack component of the original transformer paper [1]. It is

composed of an embedding layer, an encoder stack and an

output layer. A pre-trained BERT model can be fine-tuned to

target specific tasks (e.g. Question Answering) by changing

the output layer to match the down-stream tasks during the

fine-tuning step. The encoder stack is built from N identical

layers (where N is a model hyper-parameter); each layer has

a multi-headed self-attention block and a feed-forward block.

Since the focus of this work is to accelerate BERT, we will

discuss the different computations involved in an encoder layer

and we will refer the reader to the BERT paper [7] for a better

understanding of the intuition behind these computations. The

computations involved in a multi-headed self-attention block

in each encoder layer of BERT [7] are listed below:

Qi = XW
q
i + b

q
i . (1)

Ki = XW k
i + bki (2)

Vi = XW v
i + bvi (3)

headi = softmax(
QiK

T
i√

dk
)Vi (4)

Sa = LN*(Concat(head1, ..., headh)W
0 + b0 +X) (5)

where X and Sa are the input and output of the self-attention

block, respectively. W ∗

i and b∗i are the model weights and

biases, while h and dk are hyper-parameters representing the

number of heads and the head size, respectively. The output

of the self-attention block is passed to a feed-forward layer

that performs the following:

layer out = LN(GELU(SaW 1 + b1)W 2 + b2 + Sa) (6)

where GELU is the Guassian Error Linear Unit [14]. The

output (layer out) of a layer feeds the next layer in the

encoder stack, and the embedding layer feeds the first encoder

layer.

*LN: layernorm operation

B. TSP Architecture

The Tensor Streaming Processor (TSP), a statically sched-

uled SIMD architecture, performs computation using a stream-

ing processing model where computational elements, arranged

spatially by function, perform operations as tensor data streams

over the functional units. The architecture positions compu-

tation and memory units horizontally across the chip taking

advantage of dataflow locality to reduce latency and power

and increase communication bandwidth. The TSP uses a tiled

microarchitecture to scale the vector length to the underlying

data up to 320 bytes in length.

The high-level microarchitecture and spatial layout of the

TSP architecture [13] is shown in Fig. 1. Matrix execution

modules (MXMs) are located on the East and West sides of

the chip. Switching execution modules (SXMs) are located

inside of the MXMs. The Vector execution module (VXM)

is located in the center. SRAM memory modules (MEM) are

located between the computational units providing localized,

high bandwidth, low latency, load and store.

Data is streamed between functional units through 45

streaming register files (SRFs) positioned across the chip. 64

streams (32 Eastward and 32 Westward) continuously move

data between SRFs, each carrying a 320-byte vector, one SRF

per cycle, at 20 TiB/sec. Functional units consume inputs and

produce outputs from and to sets of streams on adjacent SRFs.

With spatial locality between producing and consuming func-

tional units multiple producer/consumer pairs can utilize the

same set of streams without data conflicts. MEM is composed

of 88 independent on-chip memory blocks (distributed evenly

between hemispheres). Each memory block contains pseudo-

dual-port SRAM cells that support simultaneous read and write

operations on opposite banks. Each read or write operation

produces or consumes a 320-byte vector per cycle. The on-

chip SRAM bandwidth is 55 TiB/sec.

The TSP consists of four MXM planes; 320×320 2D

MACC arrays†. Each of the 4 MXM planes is able to

independently compute a matrix multiplication between an

installed int8 320×320 matrix and a continuously streamed

int8 320×N matrix producing a 320-value int32 vector each

cycle. A physical vector on the TSP can have a maximum

length of 320 elements; logical vectors of larger sizes are

decomposed into several physical vectors.

The VXM contains 16 ALUs responsible for performing

point-wise arithmetic (add, multiply, tanh, etc.). Each ALU

operates on 1 to 8 input operands and produces 1 to 4 outputs.

The VXM supports numeric data types from int8 up to fp32.

ALU operation chain together to form complex computation

pipelines without the need to store intermediate results to

memory. The 40 TiB/s at the boundary between VXM and

MEM enables full utilization of the VXM compute capability.

The SXM is a heterogeneous group of units that distribute,

mask, transpose, rotate, permute, and shift data within and

across vectors. With the SXM located between MEM and

MXM is has locality to to MEM for high bandwidth, up to

†MXM supports int8 and fp16 matrix multiplication [13]
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Fig. 2. GEMM and GELU overlapping execution time. Grey and blue are
performed on MXM and VXM, respectively.

16 concurrent stream data flow operations and conveniently

chains between MEM and the MXM when transforming

weights or inputs for matrix multiply operations. The dis-

tribute, transpose, and permute and shift units allow chaining

within the SXM to avoid writing intermediate results to SRAM

for compound data flow transformations.

C. GroqAPI

In order to leverage the strength of the architecture and

maintain full control of our implementation strategy we used

GroqAPI to implement BERT. GroqAPI mixes high and

low levels of programming abstraction to maintain complete

control over the TSP architecture’s resources and instruction

schedule. GroqAPI allows us to statically schedule all opera-

tions on the TSP as we desire. We also have control over how

to allocate resources such as VXM ALUs and MXM planes,

and how to allocate memory.

We were able to design our compilation strategy for the

architecture, predict program latency, implement BERT ac-

cording to our design, and achieve program latency with 1%

of our original predicted latency.

III. ACCELERATING BERT

We focus on optimizing a single layer of the encoder stack

as it is the fundamental building block of transformers, and it

makes up most of the inference latency since the encoder is

built by repeating this layer multiple times. The computations

involved in that layer (eqs. (1) to (6)) are mainly dominated

by matrix-matrix multiplications which makes it amenable

to acceleration on chips with dedicated matrix multiplication

units. Unfortunately, the presence of the various non-linear

components (softmax, layernorm and GELU) usually results

in under utilizing the matrix multiplication units as they have

to stay idle waiting for results from these layers. To accelerate

BERT on the TSP, we leveraged the chaining capability of

the VXM to pipeline the nonlinear computations with matrix

multiplications such that we maximize the utilization of the

MXM units on the TSP.

In this work we use a mixed precision approach for a

quantized BERT‡. We target int8 operands for matrix mul-

tiplications and fp32 for all non-linear components.

A. GELU

The input to the non-linear GELU function is the output of

a general matrix multiply (GEMM) in the form of AW + b

as shown in eq. (6). GEMMs can be directly mapped to

‡Significantly reduces model size with minimal impact on accuracy [15].

the MXM and the associated accumulator. Since each MXM

plane has 320x320 MACCs, if W is larger than that, the

multiplication will involve multiple passes (loading weights

and then streaming activation). After computing the GEMM,

we need to compute GELU, which can be approximated as

follows:

GELU(x) = 0.5x(1 + tanh(

√

2

π
(x+ 0.044715x3))) (7)

We map GELU onto the VXM by building a pipelined chain

of 13 ALUs. This pipelined chain produces a new result

vector every clock cycle. The int32 GEMM result needs to

be dequantized [16] to fp32 before calculating GELU, and the

output of GELU needs to be quantized back to int8 before

being consumed by downstream GEMMs. We use the remain-

ing 3 ALUs of the VXM to pipeline the dequantization and

quantization stages with GELU. Since downstream GEMMs

have to be scheduled after GELU starts generating results, if

we scheduled GELU to execute after the upstream GEMM

has finished computing, we would keep the MXM idle for the

execution time of GELU. The input to GELU is the largest

activation tensor in BERT, and with a throughput of one result

vector per clock cycle the execution time of GELU is equal

to or larger than that of the GEMM feeding it§. To reduce

the MXM idle time, we pipeline the GEMM with GELU such

that every output vector from the GEMM is directly sent to

the VXM to start computing GELU. As shown in Fig. 2 with

this pipelining approach, we effectively hide most of GELU’s

latency behind the GEMM execution.

B. Layer Normalization

As seen in eqs. (5) and (6), the self-attention and feed-

forward blocks perform layer normalization (LN). Both LN

operations have the form LN(dequantize(X) + Y ) where X

is the int32 output tensor of a GEMM and Y is the fp32 output

tensor of a previous LN. Layer normalization is calculated [17]

as follows:

LN(Z) =
Z − E(Z)

√

VAR(Z) + ϵ
γ + β (8)

where E(Z) and VAR(Z) are the mean and variance of

tensor Z along the inner dimension, respectively. If Z has the

shape of (k, j), then E(Z) and VAR(Z) will have the shape of

(k, 1), which will be broadcast back to (k, j) when performing

point-wise operations with Z. γ and β are learnable parameters

and ϵ is a small value to avoid any potential division by

zero. Performing layer normalization requires three sequential

passes over the input tensor Z: one pass to calculate E(Z), a

pass to calculate VAR(Z), and a final pass to normalize Z. We

leverage all 16 ALUs of the VXM to accelerate these passes.

1) First Pass: To start the LN, we need to first compute

Z, and so we overlap producing Z with calculating E(Z).

As shown in Fig. 3, we build a chain of three ALUs that

dequantizes X (cast and a multiplication by a constant) and

§This is true for all the standard sizes of BERT.
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Fig. 3. A single chain of 4 ALUs performing the first pass of LN.
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Fig. 4. A single chain of 4 ALUs performing the second pass of LN.

adds the result to Y to calculate Z. This chain generates a

vector of Z (Zi) every cycle, where Zi represents the ith

column of the tensor. Z is transmitted from the VXM to

memory, but it is also directly sent to another ALU to sum all

the vectors of Z. Since this chain only needs four ALUs, we

built four parallel chains so that we generate four vectors of

Z every cycle. After producing all vectors of Z, we calculate

the average of Z by adding the partial sums (from the parallel

chains) and dividing the result by the number of vectors in Z.

The outputs of the first pass are Z and E(Z).

2) Second Pass: After calculating the mean, we need to

compute the variance as follows:

VAR(Z) = E((Z − E(Z))2) (9)

Since we have already computed Z and E(Z), we can map

eq. (9) to a chain of three ALUs as shown by the grey ALUs

in Fig. 4: first ALU performs the subtraction, second ALU

squares the difference, and a third ALU to accumulate the

incoming vectors.

The term Z −E(Z) is needed in eq. (8) and eq. (9), so we

can store that result from the second pass and reuse it later.

However, to reduce the number of ALUs used in the third pass,

we add another ALU to calculate γ(Z −E(Z)). As shown in

Fig. 4, the output of this multiplication is performed by the

blue ALU and is written to memory. Similarly to the first

pass, the 4-ALU chain in the second pass also produces one

output vector every cycle, and we create four parallel chains

to increase the concurrency to four vectors per cycle.

At the end of the second pass, we add ϵ to VAR(Z) and

calculate the reciprocal square root of the result. The outputs

of the second pass are the numerator and denominator of the

first term in eq. (8).

3) Third Pass: In an int8 quantized BERT, the output of

the layer normalization is consumed twice: it gets multiplied

by a weight matrix in a downstream GEMM, and it gets added

to another tensor just before being consumed by another layer

normalization block. In the final pass of LN, we calculate

both an int8 and and fp32 output. Similarly to the previous

two passes, we use a chain of four ALUs; as shown in Fig. 5

the first ALU calculates the product of the outputs generated

mul add mul cast

…,β, β, β

…,𝛾(Z1-E(Z))

1

VAR(Z) + ϵ

LN(Z)

quantize(LN(Z))

…,q, q, q

Fig. 5. A single chain of 4 ALUs performing the last pass of LN.
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Fig. 6. GEMM and LN overlapping execution time. Grey and blue are
performed on MXM and VXM, respectively.

in the second pass and the second ALU adds β to the result.

The output of the second ALU is the fp32 results of the layer

normalization block (LN(Z)). This output is quantized as it is

produced to also generate the int8 quantized tensor which will

be sent to the downstream GEMM. We also use four parallel

chains in this pass.

With our LN implementation, we are able to fully utilize

all 16 ALUs of the VXM during the entire execution time.

Since we calculate the mean while producing Z and we reuse

Z−E(Z) from the second pass, we only need to read Z from

memory once throughout the three LN passes. Assuming the

shape of Z is (k, j), the number of cycles needed for the layer

normalization is:

LN cycles = 3 ∗ j ∗ ⌈ k

320
⌉ ∗ 1

4
+ c (10)

In each of the three passes, we have a throughput of 4 phys-

ical vectors per cycle. Number of physical vectors depends on

how many rows (j) are in Z and how many physical vectors

compose a single column (each physical vector can hold a

maximum of 320 elements). After the first and second passes,

we perform a normalization step that requires a constant

number of cycles (c), which does not change with the size

of Z.

As a final optimization, we start executing the first LN pass

while the GEMM producing X (one of the input to LN) is

executing. As shown in Fig. 6, This optimization effectively

hides the latency of the first LN pass completely. With this

optimization, the MXM unit will only be idle for the time

needed to finish the second and third LN passes.

C. Self-Attention Block

Within the self-attention block, we need to perform eqs. (1)

to (4) for every head in the model where the number of

heads (h) is a model parameter¶. Instead of performing h

separate matrix multiplications to compute Qi (eq. (1)), a com-

mon transformer optimization is to concatenate the different

¶The standard BERT sizes use 12 and 24 heads.
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Fig. 7. Compute graph for the self-attention block.

weights (W
q
i ) of all the heads and perform one large matrix

multiplication that generates Q which includes the Qi of all

the heads. In our implementation, we follow this optimization

strategy for calculating Q, K and V .

Fig. 7 shows the compute graph of the self-attention block.

It includes nodes (reorder) representing the reshape and trans-

position operations needed to separate the different heads from

the concatenated Q, K and V . A thick line between two nodes

represent a change in data type performed as a quantization

or a dequantization step. As mentioned earlier, the output of

our GEMM is int32, but the inputs are expected to be int8,

and the inputs and outputs of the softmax are in fp32. The

batched-GEMM represents several independent GEMMs (one

for each head) to perform the GEMMs in eq. (4) for all the

heads in the model.

We parallelize the execution of GEMMs across all MXM

planes. When a GEMM requires multiple MXM passes (hap-

pens when the weights tensor has more than 320 rows or

columns) on the same MXM plane, we hide the delay of

installing weights by loading the weights of pass i while

executing pass i−1, so there are no idle MXM cycles between

passes; that is, each MXM plane is continuously producing

data.

Performing transpositions to separate the different attention

heads can be an expensive operation. Since the output of these

transpositions are only used as inputs to the batched-GEMM,

we simplified this step to avoid transpositions and just rely

on reshaping and masking the inputs being sent to the MXM.

With this simplification, the reorder operation shown in Fig. 7

is performed on-the-fly in the SXM as data is travelling from

memory to the MXM.

The non-linear component in the self-attention block is the

softmax operation. Similar to layer normalization, softmax

requires more than one pass on the input tensor. However,

we need to perform h independent softmax operations (one

for each head). We have optimized the softmax in a similar

approach to the one used in optimizing the layer normalization;

we store intermediate values from one pass that can be reused

in another pass, and we build four parallel chains of ALUs

that allow us to produce four vectors of results during every

pass of the softmax.

Fig. 8 shows the scheduling of the softmax and reorder

operations with the other GEMMs in the self-attention block.

GEMM (Q)
GEMM (K)

requant

batched-GEMM 
(QK’) GEMM (V)

softmax

Time
reorder

MXM

VXM

SXM

Fig. 8. Self-attention block execution schedule. Grey, blue and green are
performed on MXM, VXM and SXM, respectively.

By pipelining the reorder operation with the execution of the

batched-GEMM, we can start the batched-GEMM without

waiting for the reorder operation to finish execution. We

were also able to hide the latency of the softmax operation

completely by starting its execution as soon as the first vector

of results is produced by the batched-GEMM operation, and

overlapping the last part of the softmax with another indepen-

dent GEMM (calculating V does not have a dependency on

the result of softmax). Note that during the batched-GEMM

shown in Fig. 8, we have a pipeline that starts by reading a

vector from MEM, reordering it on the SXM, passing it to

the MXM, then sending the MXM result to the VXM to flow

through several ALUs (softmax pass) to be finally written to

MEM again.

The key optimizations that enabled us to achieve low latency

on batch-1 inferences are:

1) Deeply pipelining non-GEMM operations with GEMMs

to hide their latency and increase the utilization of the

MXM.

2) Optimizing the layer normalization operation to reduce

the idle time time during which the MXM is waiting for

LN results.

This deep pipelining also resulted in reducing the on-chip

scratchpad memory needed for intermediate results, which

leaves more on-chip memory to be used for constant data.

IV. RESULTS

Using GroqAPI we implemented a quantized BERT-base

model to execute on the TSP hardware; our implementa-

tion included all the optimization strategies explained earlier.

BERT-base models have 12 attention heads (h), 12 layers

(N ) in the encoder stack, each head has a size of 64 (dk),

and the feed-forward block has a size of 3072. We added an

output layer to our model to target question answering tasks.

To get the int8 quantized model similar to [15], we started

with a pretrained BERT base model (uncased) [18], added

fake quantization nodes to the model (introducing quantization

errors), calibrated the fake quantization nodes to get the scalar

values needed for scaling, and then performed quantization-

aware-training (QAT) by fine tuning the quantized model using

the SQuAD 1.1 training dataset [19]. The quantization method

used was per-tensor, scale-based linear quantization [16]. We

explored two quantized models: one (quant-uniform) that has

all the biases quantized to int32, and weights and embedding

quantized to int8; and another (quant-mixed) that has the

weights quantized to int8, embedding quantized to int16, and
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biases quantized to int32. The fp32 baseline F1 score of the

model running SQuAD 1.1 dev dataset was 87.18%, quant-

uniform achieved an F1 score of 86.98%, and quant-mixed

achieved 87.16%. Unless otherwise stated, for the remainder

of this section we will be discussing performance of the quant-

mixed model.

TSP results shown here were measured on a remote server.

The TSP was running at a 900 MHz clock, and the server has

32 CPU cores running an Ubuntu 18.04.4 OS.

A. Deterministic Low Latency

A key advantage of our implementation on the TSP is that

it not only provides low latency, but that it provides low tail

latency. Since the TSP is deterministic, we have full control

in scheduling instructions and so our implementation does

not suffer from variation in latency due to hardware-managed

scheduling or non-uniform memory access latency. In fact, as

mentioned earlier, before implementing our mapping of BERT

in GroqAPI we estimated the latency of that mapping and it

was only 1% longer than what we eventually measured on

hardware. Having full control over scheduling every instruc-

tion enabled us to achieve the deep pipelining needed to hide

TABLE I
A100 [22], T4 [23] AND TSP [13], [24] SPECIFICATIONS.

Chip Die Area
(mm2)

Tech
Process
(nm)

Transistor
count (B)

TDP (W)

NVIDIA
T4

545 12 13.6 70

NVIDIA
A100

826 7 54.2 400

Groq TSP 725 14 26.8 275

the latency of all non-GEMM components to maximize the

utilization of the MXM unit.

We measured the latency of thousands of invocations of our

BERT model running on the TSP; this latency includes the

time to copy data from a host to the TSP, time to execute the

model on the TSP, and time to copy results back to the host.

Our measured latency does not include the tokenization time of

the input sequence and the time to project the final prediction

of the model back to text. Tokenization [20] is the process

of translating the input text into a list of tokens that will be

consumed by the model. Tokenization and final projection are

not compute-heavy and so we perform them on the host||. We

are focused on batch-1 execution, so every invocation performs

an inference on a single input sequence; we consistently used

inputs with 128 sequence length. Fig. 9 shows the distribution

of the latency for 4000 different inferences. As expected,

the deterministic execution resulted in a very narrow latency

distribution with an average latency of 128.9 µs and a standard

deviation of only 3.8 µs.

To better understand the distribution of end-to-end response

times, we decomposed the execution time of the measured

inferences into five chunks: time needed to execute the embed-

ding layer (Embedding), time spent executing the self-attention

blocks of all layers in the encoder (SA Block), time spent

executing the feed-forward blocks of all layers in the encoder

(FF Block), time to execute the output layer (SQuAD Head),

and communication time between host and TSP (Host-TSP

Comm). Fig 10 shows that 83% of the end-to-end latency is

from the encoder stack (FF Block and SA Block); this time

is divided equally between all the layers. This observation

highlights the importance of having a highly-optimized layer

in order to reduce the overall inference latency. Fig 10 also

shows that the 1st and the 99th percentile latency are 128.5 µs

and 129.5 µs, respectively. Both have an identical breakdown

with the exception of having different times for the Host-

TSP communication. Data is communicated between the host

and TSP through a 16-lane PCIe gen4 channel, which will

replay a transmission error across the PCIe link if we receive

a corrupted packet. This replay mechanism does introduce a

small variability in the observed end-to-end latency, as such

this chunk is the only source of variation in latency between

inferences.

||This is a standard practice when accelerating NLP models [21].



TABLE II
T4, CURRENT SOTA (A100) [21] AND THIS WORK BERT-BASE LATENCY

(QUANTIZED INT8 MODEL AND 128 SEQUENCE LENGTH).

T4 (µs) Current
SOTA
A100 (µs)

This work
(µs)

Speedup
(This work
vs SOTA)

Average 1330 630 128.9 4.8×

95th

Percentile
1550 780 129.1 6×

99th

Percentile
1570 790 129.5 6.1×

B. Comparison to State-of-the-art

Since GPUs dominate the high-performance machine learn-

ing inference and training markets, we compare our imple-

mentation against the current state-of-the-art (SOTA) int8

quantized BERT-base implemented using the highly-optimized

TensorRT and running on the latest A100 GPU [21]. Table I

compares the specifications of the A100 to the TSP. The A100

is a more recent chip manufactured using a smaller technology

node and has approximately twice the number of transistors

compared to the first-generation TSP that we are using. Table I

also shows the specification for the slightly older T4 GPU

that targets markets with lower power profile as evident by

the lower TDP and commonly used for inference.

Table II lists the latency of NVIDIA-optimized BERT-base

running on a T4 GPU, A100 GPU and our implementation

running on the TSP. It shows that the A100 sets the record as

the current SOTA with an impressive 2× speedup compared

to T4. Similar to our methodology, the A100 latency num-

bers reported in this table also do not include the time for

tokenization and final projection. However, the A100 latency

numbers also do not include the time to copy data between host

and TSP (while our latency numbers take that into account).

The table shows that our implementation achieves a 4.8×
speedup compared the average latency of the current SOTA.

Although the A100 has double the number of transistors,

our implementation was able to squeeze significantly more

effective computing power from the TSP. The TSP architecture

enabled us to spatially parallelize independent components and

to deeply pipeline components with data dependency such that

we hide the latency of non-GEMM compute.

As explained earlier, for real-time applications it is critical

to maintain a low tail latency, so we also compare the 95th

and 99th percentile latency. The 99th percentile of the current

SOTA jumps by more than 25% compared to the average

latency (from 630 µs to 790 µs). This jump is mainly due

to contention in the cache-based memory hierarchy used by

GPUs. This hierarchy results in a non-uniform latency when

accessing memory which translates to a longer tail latency

for some inferences. The TSP’s on-chip SRAM is explicitly

managed by software, and its 220 MiByte capacity is 4-10×
the size of a modern GPU’s last-level cache (LLC). Due

to the deterministic nature of the TSP, the 99th percentile

latency of our implementation is only 0.4% higher than the

average. For real-time applications that care about tail latency,
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Fig. 11. BERT-base TSP memory utilization for different types of embedding.

our implementation offers a 6.1× speedup compared to best-

known results run on a complex modern GPU having twice

the transistor count.

C. On-chip Memory Analysis

The TSP’s on-chip SRAM capacity of 220 MiBytes is

highly “banked” to exploit memory-level parallelism. Each

memory ”slice” contains a bank of SRAM, with up to 176-

way memory concurrency. We use this memory concurrency

to feed 20 TB/sec of operand bandwidth into the MXM and

VXM units and sink their results back to available on-chip

SRAM. Since SRAM is more capacity constrained than most

DRAM systems, we focused on building BERT models that

reside entirely on a single chip. Our implementation of BERT

efficiently use the on-chip SRAM by minimizing the amount

of memory needed as a scratchpad to store intermediate

results. By reducing the size of the scratchpad, we have

more on-chip SRAM available to store the constants of the

model. Fig. 11 shows the utilization of the on-chip addressable

memory for our implementation of the quant-uniform (int8

embedding) and quant-mixed (int16 embedding) models. Since

our implementation is deeply pipelined, most intermediate

results are not written completely to memory but are rather

consumed directly by downstream operations or are partially

stored in shallow FIFOs. This deep pipelining results in our

implementation only consuming ≈5.5% of the addressable

memory as a scratchpad. The quant-mixed and quant-uniform

implementations use 71% and 58% of the addressable space

as constant memory, respectively. The increase in constant

memory is due to using a larger embedding for the quant-

mixed model. Both models use less than 1% of the addressable

memory space to store instructions.

V. RELATED WORK

Transformer models, like BERT, are increasingly finding

new use-cases in image recognition and natural language

processing (NLP) such as question answering where end-

to-end latency is vital to return both a timely and quality

response. PoWERBERT [25] exploits redundancy in word-

vectors and dropping less significant word-vectors; they show

a 4× latency reduction. The techniques they advocate result in



<1% accuracy loss, and would equally apply to our approach

on the TSP. DeeBERT [26] uses dynamic early exit, similar to

that used in vision models, yielding 40% reduction in inference

time with minimal accuracy loss. Similar conditional-exit

could be added to our implementation on the TSP to show

similar benefit.

Microsoft [27] accelerated inference of large transformers

using multi-GPU systems by efficiently distributing the work

load across the different GPUs in the system. They report up

to 4.4× reduction in latency. In our future work, we will also

explore accelerating larger models across a system of TSPs.

Fang et al. [28] accelerated different variants of BERT models

on GPUs by parallelizing the reduction operations (softmax

and layer normalization) and adapting the memory manager

to handle different sequence lengths.

A3 [29] and SpAtten [30] are examples of academic efforts

that design custom chips to efficiently accelerate transformer-

based models. Both efforts perform further pruning and ap-

proximation on the models along with customizing a hard-

ware architecture that result in large speedups compared to

general-purpose chips. Unlike these efforts, in this work we

accelerate BERT (without custom approximation or pruning)

on a general-purpose ML accelerator chip.

VI. CONCLUSION AND FUTURE WORK

Motivated by the importance of low tail-latency for real-

time machine learning systems, we accelerated the inference

of a transformer-based model (BERT) on the tensor streaming

processor (TSP). We analyzed the compute involved in an

inference through BERT and identified that in many cases

the non-linear components become a bottleneck that results

in underutilizing the matrix multiplication unit. We carefully

mapped and scheduled the compute blocks of BERT to the

different functional units of the TSP such that we hide the

latency of these non-linear components behind matrix multi-

plications. Our optimized implementation resulted in reducing

the end-to-end latency of a BERT-base inference to 130 µs

which is 6× lower than that of the current SOTA achieved on

an A100 GPU.

In our next steps, we will increase the size of the BERT

encoder layers to fully utilize the TSPs vector length. We

will experiment with adding volume to weights to potentially

improve model accuracy at the expense of a relatively small

increase in latency. Our custom-sized BERT-base will have

a head size (dk) of 80, a hidden dimension of 960, and a

feed-forward block size of 3840. These new sizes increase the

model memory size by ≈50%, but our preliminary analysis

show that it will only increase the latency by <20% and only

increase the used addressable memory by 24%.
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