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Executive Summary 

Background 

In the course of performing a CRADA with the Army Analytics Group and its Research 

Facilitation Laboratory, Entanglement, Inc. (EI), has demonstrated a dramatically faster 

and more accurate cybersecurity anomaly detection capability - with far fewer false 

positives - than any known technology. 

Most cybersecurity reporting across the world (including the 2022 Sonicwall Report) 

concluded that almost every type of cyber-attack rose significantly in 2021, including zero-

day and ransomware attacks. All these attacks have a common thread: cyber anomalies. 

Anomaly detection in cybersecurity is the identification of rare occurrences, items, or 

events of concern due to characteristics differing from most of the processed data, which 

allows organizations to track security errors, structural defects and even fraud. The three 

main forms of anomaly detection are: unsupervised, supervised, and semi-supervised. 

Security Operations Center (SOC) analysts use each of these approaches to varying 

degrees of effectiveness in Cybersecurity applications. Systems limited to supervised 

machine learning tend to flag so many potential anomalies that analysts are left battling 

an endlessly growing stack of false positive alerts, suffering from cognitive overload.  

Excessive logins, spikes in traffic between two points, and an unusually large number of 

remote logins are a few examples of anomalies.  As we learned during the pandemic 

response in 2020, this latter “anomaly” was necessary for many organizations to keep 

business moving when workers were stuck at home. Given the challenges presented from 

the scale of remote working during the COVID-19 Pandemic and the increased cyber 

threats of 2021, the U.S. Army turned to the private sector to explore a range of possible 

solutions. 

In May of 2021, President Biden issued an Executive Order mandating all federal 

agencies to adopt zero-trust security. In the third quarter of 2021, a new approach for 



2 
 

UNCLASSIFIED 

cybersecurity was proposed to address the continuous monitoring portion of the recently 

mandated zero-trust security architecture. If successful, the capability could be applied to 

and help give real-time situational awareness to larger networks operated by the Army 

and other federal agencies. It was, in part, based upon research in deep neural networks 

with the goals of (a) accelerating auto-encoder (AE) functionality; (b) accelerating 

generative adversarial network (GAN) functionality; and (c) integrating a quantum-inspired 

optimization algorithm called a support vector machine (SVM). The approach, which 

included a new application of Quadratic Unconstrained Binary Optimization (QUBO) for 

cyber security anomaly and outlier detection, was commissioned by the USG. Under the 

direction of the Office of Business Transformation, the Army Analytics Group (AAG) 

immediately began working with a wide range of potential sources of emerging 

technologies that might be employed to defeat the threat of cyber anomalies. In June 

2021, the director of the AAG, Mr. Dan Jensen, became aware of a no-cost offer of 

assistance by Entanglement, Inc., who selected its strategic partner and team participant, 

Groq, Inc., a U.S. semiconductor company, to provide the Army with novel, 

groundbreaking proprietary technology, and computational service.  

 

The Entanglement team offered its services to assist the Army in determining an optimal 

cybersecurity anomaly detection capability within twelve months. In June 2021, AAG and 

Entanglement extended an existing Cooperative Research and Development Agreement 

(CRADA) entitled “COVID-19 Resource Allocation Optimization.” The Entanglement team 

worked for the next several weeks with the AAG’s Research Facilitation Laboratory led by 

Dr. Clay Stanek and demonstrated significant performance improvements and feasibility 

in October 2021. 

Key Findings, Implications, and Recommendations 

The work under the CRADA culminated in the validated capability to solve cybersecurity 

anomaly detection faster than traditional methods, and with better performance as 

measured by Key Performance Parameters (KPP’s). The KPP’s covered metrics related 
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to total inferences per second, percentage of threats detected, accuracy, recall, precision, 

other confusion matrix-based metrics, and Area Under the Curve (AUC). 

 

With additional variables or larger datasets, the Entanglement/Groq capability offers 

greater efficiency than traditional methods and can solve otherwise intractable problems 

at scale. The core technology is a proprietary purpose-built digital circuit design with high 

degrees of parallelism for solving classes of problems that can be expressed as deep 

neural network models and Quadratic Unconstrained Binary Optimization (QUBO) 

problems. Previous AAG efforts showed the ability to detect 120,000 inferences per 

second. This was the metric used as the benchmark and standard achievable using a 

QUBO model. Benchmarking was based on a solution set which joins an algorithmic 

solution with a proprietary quantum inspired chip. The chip solution can scale out to 

cards, nodes, and beyond. Additionally, the existing solution benchmarked for CRADA 

feasibility is already in development for next generation updates which will improve 

modularity and reduce heat signatures. 

 

Within six months Entanglement was able to achieve an anomaly detection rate of 

72,000,000 inferences per second and demonstrated the potential to achieve 

120,000,000 inferences per second across a wide domain of data processing systems.  

 

The validation cases were constructed from the KDD Cup 1999 (KDD99) dataset and the 

CICIDS2017 data set. The calculated output demonstrated for the AE and GAN solution 

was extremely effective in determining anomalies as outlined in the model performance 

section.  The QUBO SVM was built in quantum-ready form and was also effective at 

anomaly detections and finally was able to do the entire data set calculation in 

approximately 250 milliseconds. 
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Introduction 

Background 

The U.S. Army is teamed with innovative industry partners and has developed a 

quantum-inspired and quantum-ready and accelerated AI computing environment 

(Accelerated AI Platform) that offers speed, scale and accuracy for optimization and AI 

problems. The platform’s analytics capabilities will assist the Government in quickly 

optimizing and accelerating AI and machine learning processes using Entanglement’s 

solver NGQ™ (quantum optimization), and Neural Network applications for Cyber Threat 

Detection, specifically real-time anomaly detection. 

 

AAG seeks to apply NGQ™ and novel AI hardware processors to three areas that would 

support the continuous monitoring portion of Zero Trust architectures. This includes an 

anomaly detection algorithm capable of continuously vetting all users on a network and 

their actions. A similar algorithmic framework will be suitable for demonstrating Intrusion 

Detection Systems (IDS) and expanded threat awareness at network endpoints to 

improve the processing of telemetry data dramatically within current cyber operations. In 

demonstrating such a capability, this work will have engineered a new class of anomaly 

detection algorithms capable of use not only for cyber, but for many problems where the 

events of interest happen very infrequently but are of great significance when they do. 

 

Some of the distinct advantages which the Entanglement solution provides are: 

 

 Uninterrupted Security: Stack-on Threat Models which prevent having to interrupt 

security operations to retrain for a new threat detected.  

 No increase in latency when model increases performance. 

 Unified versus distributed use of memory.  

 Scalable architecture to include chip, card, node, and rack. 

 Fast model context switching.  

 Quantum-inspired and Quantum-ready. 



5 
 

UNCLASSIFIED 

 Utilizes next-gen QUBO (Quadratic Unconstrained Binary Optimization) solver. 

 Hardware/Software deployable solution available today. 

 

Overall, the technology created through the U.S. Army CRADA is an enterprise 

cybersecurity solution that gives total situational awareness over the enterprise to detect 

and resolve anomalies in support of a zero-trust environment. 

Project Aims and Guiding Questions 

The project has 3 guiding questions that provide structure and clarity for the analyses: 

1. Can an anomaly detection solution, with new hardware, be used to 

implement an autoencoder (AE) for cybersecurity with greater performance 

than existing systems?  

2. Can an algorithmic framework suitable for demonstrating Intrusion Detection 

Systems (IDS) and expanded threat awareness, at network endpoints, be 

implemented into a Generative Adversarial Network for cyber anomaly 

detection with greater performance than existing systems? 

3. Can unsupervised cyber-telemetry algorithms be formulated in QUBO form 

to perform sparse correlations of data?  

Project Roadmap 

Modeling phase: Collect, cleanse and create a standardized anomaly and telemetry data 

set to use as input into SW algorithm models that will be implemented in hardware (HW) 

using Groq’s Tensor Streaming Processor.  Algorithms include deep-learning enabled 

and quantum ready for application to the anomaly detection problem. 

Run phase: Run the HW models created in the previous step. Design and create a 

scalable solution that works for large datasets. Fine-tune any parameters (both business 

related, hyperparameter and QUBO related) to obtain the best possible solution and 

performance. 

Report:  Define and compute Key Performance Metrics and perform any further fine-

tuning of the parameters. 
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Validation: Validate the full solutions by creating and comparing against an alternate 

approach based on classical algorithms on NVIDIA or standard CPU technology. 

Documentation of all the findings.  

 

Input Data Sets 

The KDD99 Data Set 

We describe the input data sets with anomaly rates and types of anomalies.  The KDD99 

dataset consists of normal data points and points that have been labeled as Denial of 

Service (DoS), Remote to User (R2L), User to Root (U2R), and Probing (Probe) by 

logging network packet information. More information about the dataset can be found at 

https://kdd.ics.uci.edu/databases/kddcup99/task.html. 

Examining Columns From Five Normal Examples in the KDD99 Data Set 

First, let’s look at the column names in the KDD data set. 
col_names = 

["duration","protocol_type","service","flag","src_bytes","dst_bytes","land","wrong_fragment","urgent","hot","n

um_failed_logins","logged_in","num_compromised","root_shell","su_attempted","num_root","num_file_creati

ons","num_shells","num_access_files","num_outbound_cmds","is_host_login","is_guest_login","count","srv

_count","serror_rate","srv_serror_rate","rerror_rate","srv_rerror_rate","same_srv_rate","diff_srv_rate","srv_d

iff_host_rate","dst_host_count","dst_host_srv_count","dst_host_same_srv_rate","dst_host_diff_srv_rate","d

st_host_same_src_port_rate","dst_host_srv_diff_host_rate","dst_host_serror_rate","dst_host_srv_serror_ra

te","dst_host_rerror_rate", "dst_host_srv_rerror_rate","label"] 

 

 

https://kdd.ics.uci.edu/databases/kddcup99/task.html
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Figure 1  Five Examples from Beginning of KDD99 Data Set 
 

The number of columns is too wide to fit in one image so there are a series of ‘strips’ that 

work from left to right, top to bottom that compose Figure 1.  The last column in each 

sample is called the ‘label’, which tells us whether the sample is normal or what specific 

type of anomaly it is.  We will discuss anomaly types below. 

Examining Columns From Five Normal and Five Anomalous Examples in the 
KDD99 Data Set 

Now, we print out five anomalous examples with five normal examples for feature 

comparison.  The first five are the ‘portsweep’ anomaly and the last five are normal 

examples.  This is shown in Figure 2 
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Figure 2  Comparison of features between anomaly and normal example 

 

Here are the 23 types of labels in the KDD99 dataset: 

['back.' 'buffer_overflow.' 'ftp_write.' 'guess_passwd.' 'imap.' 'ipsweep.' 'land.' 'loadmodule.' 'multihop.' 'neptune.' 'nmap

.' 'normal.' 'perl.' 'phf.' 'pod.' 'portsweep.' 'rootkit.' 'satan.' 'smurf.' 'spy.' 'teardrop.' 'warezclient.' 'warezmaster.'] 

 

Note that the label ‘normal’ is the 11th type of label.  All other labels and their 

corresponding number in the list are examples of anomalies.  Said another way, label 

type ‘normal’ is enumerated with 11.  All other label numbers refer to types of anomalies. 

One-Hot Encoding of Categorical Features 

For the columns that are categorical, we must one-hot encode them: 

cat_vars = ['protocol_type', 'service', 'flag', 'land', 'logged_in','is_host_login', 'is_guest_login'] 

 

Here in Figure 3, One-hot Encoded Features, we show the first five examples as their      

categories look under one-hot encoding. 
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Figure 3 One-Hot Encoded Columns of KDD99 Data Set 
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For example, the categorical variable "protocol_type" is split into three categories, 

protocol_type_icmp, protocol_type_tcp and protocol_type_udp. Now that the one hot 

encoding of the categorical data is done, we need to merge the numerical data from the 

original data. 

 

Notice that the one-hot encoding increased the number of feature columns from an 

original 41 to 122.  Most of them come from the one-hot encoding of the different types of 

category for ‘service’ and ‘flag’. 
 

Splitting of Test and Train Data Sets 

Now let's split the data into training set and test set in the ratio of 75:25. We will be using 

LabelEncoder, fit_transform and train_test_split from scikit-learn Python Machine 

Learning package.  Here are the dimensions on the training data set, training data set 

label, test data set, and test data set label.  We can see they are in a ratio of 3:1.  Recall 

that y_train and y_test are the labels for each row sample.  If it is normal, the number ‘11’ 

appears as the label.  Otherwise, the associated enumeration with each particular 

anomaly occurs in the y_test and y_train sets. 

 

# concatenate numeric and the encoded categorical variables 

numeric_cat_data = pd.concat([numeric_data, cat_data], axis=1) 

 

# here we do a quick sanity check that the data has been concatenated correctly by checking the dimension 

of the matrices 

print(cat_data.shape):  (4898431, 88) 
print(numeric_data.shape):  (4898431, 34) 
print(numeric_cat_data.shape): (4898431, 122) 

 

print(x_train.shape):  (3673823, 122) 
print(y_train.shape): (3673823, 1) 

print(x_test.shape):  (1224608, 122) 
print(y_test.shape):  (1224608, 1) 

about:blank
about:blank#sklearn.preprocessing.StandardScaler.fit_transform
about:blank
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Saving the Data for Later Training and Inference with AE and GAN 

And the last step of our data preprocessing is to save the full KDD99 dataset that has      

been one-hot encoded as what is known in Python as a Pickle file.  It is just a binary file    

type that is optimized for I/O in Python. 

 

Distribution of Normal and Anomalous Examples in Existing File 

At this current state, let’s take a look at how many normal and anomalous examples 

appear in our training and test set of 4898431 examples. 

 

Figure 4  Pie Chart Showing Components of Normal and Anomalous Examples in KDD99 Data Set 

 

Figure 4 is a very important figure.  The KDD99 data set at this point only contains 20% 

normal examples!  This will require addressing and is the most subtle part of working with 

# save the datasets for later use 
preprocessed_data ={ 
 'x_train':x_train,'y_train':y_train,'x_test':x_test, 'y_test':y_test, 'le':le 
} 
 
# pickle the preprocessed_data 
path = 'preprocessed_data_full.pkl' 
out = open(path, 'wb') 
pickle.dump(preprocessed_data, out) 
out.close() 
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the training of the AE and GAN.  Therefore, we will have to do one more step with the 

data before using it for training:  we will need to resample it so the ratio of anomalous to 

normal examples is in the range of 1 to 100 (1%) and at most 1 to 20 (5%).  The AE will 

be very sensitive to this ratio while the GAN will not be anywhere near as sensitive.  In the 

tests run by RFL and subsequently by Groq, the base rate was chosen to be 1%.  We will 

discuss this in the next section. 

In the cell below, choose to either use 1% or 5% anomaly in data set by setting the 

pct_anomalies parameter to .01 or .05 respectively. 

 

Recall that we have constructed training and test sets where we removed most of 

anomalous data in the KDD99 dataset. This lets us simulate a more realistic anomaly 

detection problem where anomalies only comprise a small percentage of the data. We 

also trained a label encoder on the anomalous labels. This will allow us to go back and 

forth between labels and their encoded values. 

 

Most of the data preprocessing has already been done. We one-hot encoded the 

categorical variables and separated the labels off from the input data. For training deep 

autoencoder (AE) models, the input data will also have to be scaled between 0 and 1. 

pct_anomalies = .01 

 

!python preprocess_data.py --pct_anomalies $pct_anomalies 

 

filename = './preprocessed_data_full.pkl' 

input_file = open(filename,'rb') 

preprocessed_data = pickle.load(input_file) 

input_file.close() 

 



13 
 

UNCLASSIFIED 

 

 

The preprocessing is complete and the KDD99 data set has been configured with 1% 

anomalies, appropriately scaled, and ready for testing with Autoencoders and Generative 

Adversarial Network anomaly detection. 

 

Processing of the CICIDS2017 Data Set 

Evaluations of eleven datasets since 1998 show that most are out of date and unreliable. 

Some of these datasets suffer from the lack of traffic diversity and volumes, some do not 

cover the variety of known attacks, while others anonymize packet payload data, which 

cannot reflect the current trends. Some are also lacking feature set and metadata. 

CICIDS2017 dataset contains benign and the most up-to-date common attacks, which 

resembles the true real-world data (PCAPs). It also includes the results of the network 

traffic analysis using CICFlowMeter with labeled flows based on the time stamp, source, 

and destination IPs, source and destination ports, protocols and attack (CSV files). Also 

available is the extracted features definition. 

Generating realistic background traffic was the top priority in building this dataset. We 

have used our proposed B-Profile system (Sharafaldin, et al. 2016) to profile the abstract 

# Normalize the testing and training data using the MinMaxScaler from the scikit learn package 

scaler = MinMaxScaler() 

 

# Make sure to only fit the scaler on the training data 

x_train = scaler.fit_transform(x_train) 

x_test = scaler.transform(x_test) 

 

# convert the data to FP32 

x_train = x_train.astype(np.float32) 

x_test = x_test.astype(np.float32) 
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behavior of human interactions and generates naturalistic benign background traffic. For 

this dataset, we built the abstract behavior of 25 users based on the HTTP, HTTPS, FTP, 

SSH, and email protocols. 

The data capturing period started at 9 a.m., Monday, July 3, 2017, and ended at 5 p.m. 

on Friday, July 7, 2017, for a total of 5 days. Monday is the normal day and only includes 

benign traffic. The implemented attacks include Brute Force FTP, Brute Force SSH, DoS, 

Heartbleed, Web Attack, Infiltration, Botnet and DDoS. They have been executed both 

morning and afternoon on Tuesday, Wednesday, Thursday and Friday. 

In their recent dataset evaluation framework (Gharib et al., 2016), they have identified 

eleven criteria that are necessary for building a reliable benchmark dataset. None of the 

previous IDS datasets could cover all of the 10 criteria. In the following, we briefly outline 

these criteria: 

1. Complete Network configuration: A complete network topology includes Modem, 

Firewall, Switches, Routers, and presence of a variety of operating systems such 

as Windows, Ubuntu, and Mac OS X. 

2. Complete Traffic: By having a user profiling agent and 12 different machines in 

Victim-Network and real attacks from the Attack-Network. 

3. Labelled Dataset: Section 4 and Table 2 show the benign and attack labels for 

each day. Also, the details of the attack timing will be published on the dataset 

document. 

4. Complete Interaction:  We covered both within and between internal LAN by 

having two different networks and Internet communication as well. 

5. Complete Capture: Because we used the mirror port, such as a tapping system, all 

traffics have been captured and recorded on the storage server. 

6. Available Protocols: Provided the presence of all commonly available protocols, 

such as HTTP, HTTPS, FTP, SSH and email protocols. 
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7. Attack Diversity: Included the most common attacks based on the 2016 McAfee 

report, such as Web-based, Brute force, DoS, DDoS, Infiltration, Heart-bleed, Bot, 

and Scan covered in this dataset. 

8. Heterogeneity: Captured the network traffic from the main Switch and memory 

dump and system calls from all victim machines, during the execution of the attack. 

9. Feature Set: Extracted more than 80 network flow features from the generated 

network traffic using CICFlowMeter and delivered the network flow dataset as a 

CSV file. See our PCAP analyzer and CSV generator. 

10. MetaData: Completely explained the dataset which includes the time, attacks, 

flows and labels in the published paper. 

Below is the python code required to load the CICIDS2017 data set and preprocess it 

for loading into the SVM QUBO solver. 
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processedData=pd.read_csv("F:/benchmarks/MachineLearningCVE/processedData.csv") 
finalData= maximum_absolute_scaling(processedData) 
finalData=finalData.dropna() 
RowOfP=finalData.loc[finalData['LabelN']==1] 
print('Number of positive:', len(RowOfP)) 
RowOfP1=RowOfP.reset_index(drop=False) 
percentageOfPositive=0.001 

NumberOfRemovedPositive=int(len(RowOfP1) -␣ 
,→percentageOfPositive*len(processedData)) 
realDropList=[] 
randomlist = random.sample(range(1, len(RowOfP1)), NumberOfRemovedPositive) 
for index in randomlist : 
realIndexOfElement = RowOfP1['index'][index] 
realDropList.append(realIndexOfElement) 
finalData=finalData.drop(realDropList) 
Y=finalData['LabelN'] 
finalProcessedData =finalData.drop(columns=['LabelN']) 
print('Number of Normal ', collections.Counter(Y)[0]) 
print('Number of Anomalous ', collections.Counter(Y)[1]) 

x_train, x_test, y_train, y_test = train_test_split(finalProcessedData␣ 
,→,Y,test_size=0.3,random_state=41) 
print("Length of Train Data:", len(x_train)) 
print("Length of Test Data:", len(x_test)) 

finalProcessedData 

Number of positive: 291001 
Number of Normal 1399824 
Number of Anomalous 1693 
Length of Train Data: 981061 
Length of Test Data: 420456 
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We see there is an 80/20 split of the training to the test data and there are 77 features in 
the data itself.  Below we provide examples from 10 rows and a sample of 20 of the 77 
columns. 
 

Flow Duration Total Fwd Packets Total Backward Packets  
0  2.500000e-08  0.000009  0.000000 
1  9.083334e-07   0.000005  0.000003 
2  4.333334e-07   0.000005   0.000003 
3  2.833333e-07   0.000005   0.000003 
4  2.500000e-08   0.000009   0.000000 
1692126 4.083334e-07   0.000005   0.000010 
1692127 1.808333e-06   0.000009   0.000003 
1692128 1.156289e-02   0.000187   0.000158 
1692129 1.725000e-06   0.000005   0.000003 
1692130 4.166667e-07   0.000005   0.000007 

Total Length of Fwd Packets  Total Length of Bwd Packets 
0   9.302326e-07     0.000000e+00 
1   4.651163e-07     9.153974e-09 
2   4.651163e-07     9.153974e-09 
3   4.651163e-07     9.153974e-09 
4   9.302326e-07     0.000000e+00 
1692126  4.651163e-07     2.746192e-08 
1692127  2.403101e-06     9.153974e-09 
1692128  2.114729e-04     1.012124e-05 
1692129  0.000000e+00     0.000000e+00 
1692130  0.000000e+00     0.000000e+00 

Fwd Packet Length Max   Fwd Packet Length Min \ 
0  0.000242      0.002581 
1  0.000242      0.002581 

print('Shape of Independent features data : ' + str(x.shape)) 
import matplotlib.pyplot as plt 
import seaborn as sns 
# corr = data.corr() 
# ax, fig = plt.subplots(figsize=(15,15)) 
# sns.heatmap(corr, vmin=-1, cmap='coolwarm', annot=True) 
# plt.show() 

print('Shape of Independent features data : ' + str(x.shape)) 
import matplotlib.pyplot as plt 
import seaborn as sns 
# corr = data.corr() 
# ax, fig = plt.subplots(figsize=(15,15)) 
# sns.heatmap(corr, vmin=-1, cmap='coolwarm', annot=True) 
# plt.show() 

Shape of Independent features data : (2000, 77) 
Shape of Independent features Train data : (1600, 77) 
Shape of Dependent features Train data : (1600, 1) 
Shape of Independent features Test data: (400, 77) 
Shape of Dependent features Test data: (400, 1) 
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2  0.000242      0.002581 
3  0.000242      0.002581 
4  0.000242      0.002581 
1692126 0.000242      0.002581 
1692127 0.001249      0.000000 
1692128 0.018372      0.000000 
1692129 0.000000      0.000000 
1692130 0.000000      0.000000 
 

Fwd Packet Length Mean   Fwd Packet Length Std \ 
0  0.001010      0.000000 
1  0.001010      0.000000 
2  0.001010      0.000000 
3  0.001010      0.000000 
4  0.001010      0.000000 
1692126 0.001010      0.000000 
1692127 0.002609      0.003076 
1692128 0.011200      0.015456 
1692129 0.000000      0.000000 
1692130 0.000000      0.000000 

Bwd Packet Length Max act_data_pkt_fwd  min_seg_size_forward 
0  0.000000 ...     0.000005   2.384208e-07 
1  0.000457 ...     0.000000   2.384208e-07 
2  0.000457 ...     0.000000   2.384208e-07 
3  0.000457 ...     0.000000   2.384208e-07 
4  0.000000 ...     0.000005   2.384208e-07 
1692126 0.000457 ...     0.000000   2.384208e-07 
1692127 0.000457 ...     0.000000   3.814732e-07 
1692128 0.074277 ...     0.000112   3.814732e-07 
1692129 0.000000 ...     0.000000   3.814732e-07 
1692130 0.000000 ...     0.000000   3.814732e-07 

Active Mean  Active Std  Active Max  Active Min  Idle Mean 
0  0.0   0.0   0.0   0.0   0.0 
1  0.0   0.0   0.0   0.0   0.0 
2  0.0   0.0   0.0   0.0   0.0 
3  0.0   0.0   0.0   0.0   0.0 
4  0.0   0.0   0.0   0.0   0.0 
1692126 0.0   0.0   0.0   0.0   0.0 
1692127 0.0   0.0   0.0   0.0   0.0 
1692128 0.0   0.0   0.0   0.0   0.0 
1692129 0.0   0.0   0.0   0.0   0.0 
1692130 0.0   0.0   0.0   0.0   0.0 

Idle Std  Idle Max  Idle Min 
0  0.0   0.0   0.0 
1  0.0   0.0   0.0 
2  0.0   0.0   0.0 
3  0.0   0.0   0.0 
4  0.0   0.0   0.0 
1692126 0.0   0.0   0.0 
1692127 0.0   0.0   0.0 
1692128 0.0   0.0   0.0 
1692129 0.0   0.0   0.0 
1692130 0.0   0.0   0.0 
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[1401517 rows x 77 columns] 

 

Metrics and Key Performance Parameters (KPPs) 
For non-QUBO performance, Confusion matrix, accuracy, precision, sensitivity, Matthew’s 

Correlation coefficient, ROC and AUC curves are used.  We define these metrics in more 

detail below. 

 

When measuring performance in AI/ML, the most common metric is the receiver operator 

characteristic (ROC) curve.  It is simply a plot of the number of false negatives against the 

number of true positives.  A perfect classifier is a vertical line that goes from (0,0) to (0,1) 

and then stays at y=1 for all values of x.  A classifier that is done by flipping a coin is a 

line with 45 degree slope running from (0,0) to (1,1). 

 

Figure 5  Definition of the ROC Curve 
The second most common method for showing performance is to produce a confusion 

matrix, which is in the middle of Figure 5.  It is a 2x2 table which bins the classification 

decisions of the algorithm.  A perfect classifier has all the samples along the left diagonal 

and 0’s on the off-diagonal.  A labelled definition of the confusion matrix is shown in 
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Figure 6.  The True Positives (TP) and True Negatives (TN) are along the main diagonal 

while the misclassifications False Positives (FP) and False Negatives (FN) are on the off 

diagonal.  From these 4 terms, we can compute several metrics that are commonly used 

to describe machine learning performance.  Some of the key metrics are given in Figure 

7. 

 

Figure 6  Definition of a Confusion Matrix 
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Figure 7 Various metrics derived from confusion matrix 
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Figure 8  ROC Curve and AUC for two highly separable classes 

 

Figure 9  ROC and AUC for two non-separable classes 

The area under the ROC curve or AUC is a great metric for determining how well your 
classification model is performing, even in the case of imbalanced classes. A score of 1 
means your model is performing perfectly (a near-perfect model is shown in Figure 8), 
while a score of .5 means that your model is the same as randomly guessing.  This is 
depicted in Figure 9 showing the line y=x as the ROC curve and the blue area below that 
curve is the AUC or .5. 
 

For computational performance, we used the wall time for processing packets in 

inferences per second. 

 

The QUBO performance on the SVM algorithm we measured as metrics: 

1. objective function value 

2. Round-trip time taken for overall optimization (QUBO processing time + Network 

transit time+ CPU processing time) 
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3. Confusion matrix, accuracy, precision, sensitivity, Matthew’s Correlation 

coefficient, ROC and AUC curves 

4. Wall time for processing packets in inferences per second 

 

Technical Modeling 
Next, we explain the derivation of the autoencoder algorithm and any transformations 

required for implementation on Groq HW for anomaly detection as well as the generative 

adversarial network anomaly detection method and finally the QUBO Support Vector 

Machine (SVM) solver. 

Autoencoder Model for Anomaly Detection 

Here we will show how the data preprocessed above goes through one final step before it 

is ready for application to train.  We will then describe the training process.  Finally, we 

will provide performance assessment against the test set and will discuss the sensitivity of 

the base rate to the performance with an autoencoder. 

 

In the real-world, labeled data can be expensive and hard to come by.  Especially with 

network security, zero-day attacks can be the most challenging and also the most 

important attacks to detect. Since, by definition, these attacks are happening for the first 

time, there will be no way to have labels from them. 

So how do we approach this problem? 

For starters, we could have security analysts investigate the network packets and label 

anomalous ones. But that solution doesn't scale and our models might have difficulty 

identifying attacks that haven't occurred before. 

Our solution needs to use "unsupervised learning." Unsupervised learning is the class of 

machine learning and deep learning algorithms that enable us to draw inferences from 

our dataset without labels. 
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In this lab we will use autoencoders to detect anomalies in the KDD99 dataset. There are 

a lot of advantages to using autoencoders for detecting anomalies. One main advantage 

is that AEs can learn non-linear relationships in the data. 

Autoencoders are a subset of neural network architectures shown in Figure 10 where the 

output dimension is the same as the input dimension. Autoencoders have two networks, 

an encoder and a decoder. The encoder encodes its input data into a smaller dimensional 

space, called the latent space. The decoder network tries to reconstruct the original data 

from the latent encoding. Typically, the encoder and decoder are symmetric, and the 

latent space is a bottleneck. The autoencoder has to learn essential characteristics of the 

data to be able to do a high-quality reconstruction of the data during decode. 

 

Figure 10  Depiction of typical autoencoder 
While we will not be using the labels in the KDD99 dataset explicitly for model training, we 

will be using them to evaluate how well our model is doing at detecting the anomalies. We 

will also use the labels to see if the AE is embedding the anomalies in latent space 

according to the type of anomaly. 

Note that we will be using Keras as the deep learning framework for this lab. Keras is an 

open source neural network library written in Python and it is designed to enable fast 

experimentation with deep neural networks. 
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Using autoencoders, we will explore the questions of how rare is rare enough for an 

anomaly? And how does that impact our ability to identify multiple classes of anomalies?. 

In the cell below, choose either use 1% or 5% anomaly in the data set by setting the 

pct_anomalies parameter to .01 or .05 respectively.  We’ll use 1% first. 

 

 

Recall that we have constructed train and test sets where we removed most of 

anomalous data in the KDD99 dataset. This lets us simulate a more realistic anomaly 

detection problem where anomalies only comprise a small percentage of the data. We 

also trained a label encoder on the anomalous labels. This will allow us to go back and 

forth between labels and their encoded values. 

 

Most of the data preprocessing has already been done earlier as described. We one-hot 

encoded the categorical variables and separated the labels off from the input data, then 

scaled the data between 0 and 1. 

 

Next we will chose the hyperparameters for the Keras autoencoder model. 

 batch_size: this determines how many datapoints we use for each gradient 
update. Choosing a large batch size will make the model train faster but it might 
not result in the best accuracy or generalization. 

 latent_dim: this determines the size of our bottleneck. Higher values add network 
capacity while lower values increase the efficiency of the encoding. 

pct_anomalies = .01 

!python preprocess_data.py --pct_anomalies $pct_anomalies 

filename = './preprocessed_data_full.pkl' 

input_file = open(filename,'rb') 

preprocessed_data = pickle.load(input_file) 

input_file.close() 
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 max_epochs: should be high enough for the network to learn from the data, but 
not so high as to overfit the training data or diverge to a worse result 

 

Below in Figure 11 we provide a detailed layer by layer buildup of the autoencoder along 

with the number of nodes going into a layer and the number of nodes coming out of the 

layer.  Note that there is a dropout layer in between every dense node layer.  We choose 

a dropout rate of 10% as a way to keep the autoencoder from overtraining on the data.  It 

is considered a best practice, but the dropout rate can vary quite a bit from application to 

application for optimum performance.  It has been seen as high as 40% in some 

problems. 

input_dim = x_train.shape[1] 

# model hyperparameters 

batch_size = 512 

latent_dim = 4  

max_epochs = 10 
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Figure 11  Graphical visualization of autoencoder layers 
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To actually train the autoencoder, we run the following Python Keras command ‘fit’ 

method: 

 

Notice that x_train appears twice.  The second occurrence is the same as saying 

‘y_desired’.  That is because we are using as a metric the difference between what 

goes into the encoder and what comes out the decoder and have earlier selected the 

mean square error as the key performance metric we will be optimizing against.  

Ideally, coming out of the autoencoder would be the values identical to the input 

values, x_train.  Also, notice there is no use of the labels in any of the training (y_test, 

y_train).  That means that the x_train data contains both normal data and anomalous 

data in a ratio of 100:1. 

 

 

Let's inspect the loss on the train and validation sets. You should see the loss on the 

training data and the loss on the validation data converging towards zero.  Notice that 

the training loss is actually higher than the validation loss.  That's because when we 

train the network, we are using dropout, which again, "is a way to control overfitting by 

randomly omitting subsets of features at each iteration of a training procedure."  When 

we validate, we remove the dropout, which gives our network its full strength.  The x 

axis represents the number of training epocs. 

 

train_history = autoencoder_model.fit(x_train, x_train, 

        shuffle=True, 

        epochs=max_epochs, 

        batch_size=batch_size, 

        validation_data=(x_test, x_test), 

        callbacks=[tensorboard_callback]) 

plt.plot(train_history.history['loss']) 

plt.plot(train_history.history['val_loss']) 

plt.legend(['loss on train data', 'loss on validation data']) 

 



29 
 

UNCLASSIFIED 

 
Figure 12  Loss on training and validation data 

 

Generative Adversarial Network Model for Anomaly Detection 

Second, we explain the derivation of the GAN algorithm and any transformations required 

for implementation on Groq HW for anomaly detection. 

 

Here we will show how the data above goes through one final step before it is ready for 

application to train.  We will then describe the training process.  Finally, we will provide 

performance assessment against the test set and will discuss the sensitivity of the base 

rate to the performance with a GAN.  In the previous section, we tried our hand at 

unsupervised anomaly detection using deep autoencoders on the KDD-99 network 

intrusion dataset. 

 

We addressed the issue of unlabeled training data through the use of deep autoencoders 

in the second section. However, unsupervised methods such as PCA and autoencoders 

tend to be effective only on highly correlated data such as the KDD dataset. 

"Adversarial training (also called GAN for Generative Adversarial Networks), and the 

variations that are now being proposed, is the most interesting idea in the last 10 years in 

ML, in my opinion.". Yann LeCun, 2016. 
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What do GANs bring to the table and how are they different from Deep Autoencoders? 

GANs are generative models that generate samples similar to the training dataset by 

learning the true data distribution. So instead of compressing the input into a latent space 

and classifying the test samples based on the reconstruction error, we actually train a 

classifier (called the discriminator) that outputs a probability score of a sample being 

Normal or Anomalous. As we will see later in the lab, this has positioned GANs as very 

attractive unsupervised learning techniques. 

GANs can be pretty tough to train and improving their stability is an active area of 

research today. 

Preprocessing Data For GAN Use 

First we start off and load the data file that is in Pickle format and convert it to a Pandas 

dataframe.  Next we, examine during the conversion to a 1% anomaly rate data file, what 

type of anomalies are present in the file. 

 

 

This is compared to the complete set of anomaly types in the original file: 

 

 

np.unique(y_train) 

array([ 0,  5,  9, 10, 11, 15, 17, 18, 20, 21]) 

#Obtain the class number for Normal entries  

pd.DataFrame(le.classes_, columns = ['Type']) 
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Figure 13  Complete List of Anomaly Types in KDD99 

As we can see by comparing the figure with the array above it, we have omitted 

[1,2,3,4,6,7,8,12,13,14,16,19,22] anomaly types from our existing data file.  Now we do a 

hard binary conversion of the data labels.  And we will now split the dataset into normal 

and anomalous data. We will need to do this in order to be able to train GANs to generate 

Normal packets only and then predict the anomaly based on the Discriminator output. 

 

 

Finally, we scale the input training data between 0 and 1 before feeding it to the model. 

Summary of the datasets: 

# Converting labels to Binary 

y_test[y_test != 11] = 1  

y_test[y_test == 11] = 0 

y_train[y_train != 11] = 1 

y_train[y_train == 11] = 0 

#Subsetting only Normal Network packets in our training set 

temp_df = x_train.copy() 

temp_df['label'] = y_train 

temp_df = temp_df.loc[temp_df['label'] == 0] 

temp_df = temp_df.drop('label', axis = 1) 

x_train = temp_df.copy() 
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 The Training set consists of only normal network packets. 

 The Testing set comprises a small number of anomalous network packets of about 

1%, reflecting what we see in the real world. 

 

Number of Normal Network packets in the Training set: 729620 

Number of Normal Network packets in the Testing set: 243161 

Number of Anomalous Network packets in the Testing set: 2466 

 

The Generative Adversarial Network 

The GAN consists of two networks namely: 

 The generator G that produces fake samples 

 The discriminator D that that receives samples from both G and the dataset. 

During Training the two networks have competing goals. The generator tries to fool the 

# check how many anomalies are in our Testing set 

print('Number of Normal Network packets in the Training set:', 

x_train.shape[0]) 

print('Number of Normal Network packets in the Testing set:', 

collections.Counter(y_test)[0]) 

print('Number of Anomalous Network packets in the Testing set:', 

collections.Counter(y_test)[1]) 
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discriminator by outputting values that resemble real data and the discriminator tries to 

become better at distinguishing between the real and fake data. 

Mathematically, this means that the Generator's weights are optimized to maximize the 

probability that fake data is classified as belonging to the real data. The discriminator's 

weights are optimized to maximize the probability that the real input data is classified as 

real while minimizing the probability of fake input data being classified as real. 

Optimality is reached when the generator produces an output that the discriminator 

cannot concretely label as real or fake and this happens when either of the networks 

cannot improve anymore. 

We will be train our GAN on normal network packets. The generator inputs noise and as 

training progresses the GAN learns the mapping between these random values to the 

input distribution. The discriminator outputs a score of how likely the generated output 

resembles the real data. 

The Generator is used to synthesize fake data points. It consists of 5 Dense Layers with a 

hyperbolic tangent activation function (tanh), which forces all about between -1 and 1, and 

uses binary cross-entropy for calculating the generator loss. Binary cross-entropy loss 

measures the performance of a two class classification model whose output is a 

probability value between 0 and 1. A perfect model would have a loss of 0. 

The Discriminator basically outputs the score of a sample belonging to the real dataset or 

the synthetic dataset. It consists of 6 dense layers-each followed by a dropout layer to 

help prevent overfitting. The sigmoid activation function is applied to the final layer to 

obtain a value in the range 0 to 1. 

Training the Model 

The generator first predicts on a batch of noise samples. As the generator has randomly 

initialized weights initially, the output of the generator at this stage is nothing but 

meaningless values. 
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The Discriminator inputs a stack of samples - the first half of which is the output of the 

generator and the second half is a batch of data samples from the real dataset. We train 

the Discriminator on this stack with the target labels 0 (Fake) for half the stack and 1 for 

the second half of the stack. The result of this is that the Discriminator is able to 

distinguish between the Real and Fake samples. 

 

The weights of the discriminator are frozen by setting the trainable parameter to False. To 

train the Generator, we first feed it random noise and let the entire GAN output a 

probability with the Discriminator weights remaining frozen. As expected this value would 

be less than 0.5 since the Discriminator was previously set to output a value close to 0 if 

the input was not genuine. 

 

 

Now comes the trick. We tell the GAN that the expected output is 1. This results in the 

errors being backpropagated only to the Generator. With every sample in the batch the 

generator's weights are tuned such that the output of the GAN is close to 1, meaning the 

Generator is now learning to produce samples that resemble the real data.  This process 

loops back to the first step for each batch in the training set shown in Figure 14. 
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Figure 14  Training of the Discriminator and Generator Neural Networks 
 

Let’s look at the training losses for the Generator and the Discriminator components of 

the GAN 

 

Figure 15  Losses for Training the GAN Components 
 

We see that compared to the autoencoder training losses, there is much more noise while 

the overall training loss tends to 0 in Figure 15.  Notice how even towards the end, there 

are bumps of more loss and the convergence is not strictly monotonic.  This is one of the 

aspects that makes a GAN so difficult to train. 
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What was the result of all the training we did? 

We now have a generator that can input a random seed value and produce an output that 

closely resembles the data it was trained on.  

The Discriminator that we trained ended up being a very powerful classifier that 

can tell if a sample point is representative of the true data distribution it was 

trained on or not and hence can be used for Anomaly Detection.  Once training is 

complete, we have no further need for the trained generator.  We discuss the 

performance results of the GAN in the next major section. 

QUBO Support Vector Machine (SVM) Model For Anomaly Detection 

Finally, we explain the derivation of the telemetry algorithm and its implementation in 

QUBO form using the Hamiltonian. 

Hamiltonian: The energy function that is minimized by annealer. It encodes the objective 

and constraints into one function. The equality constraint (supply allocation) becomes a 

quadratic term to account for the deviations of variables to either side of the target value. 

The inequality constraint (demand threshold) also becomes a quadratic term but encoded 

with the help of slack variables. 

 

Background on Support Vector Machines (SVMs) A SVM learns its parameters from a 

set of annotated training samples 

D = {𝒙𝑛, 𝑦𝑛 : n = 0, . . . , N − 1} 

with 𝒙𝑛 ∈ 𝑅𝐷 being a feature vector and 𝑦𝑛 its label. 

 

A SVM separates the samples of different classes in their feature space by tracing 

maximum margin hyperplanes.  The training consists of solving a quadratic programming 

(QP) problem 
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For N coefficients 𝛼𝑛 ∈ R, where C is a regularization parameter and k(., .) is a kernel 

function that enables a SVM to compute non-linear decision functions (by means of the 

kernel trick).  The type of kernel function which is most commonly used is the Radial 

Basis Function: rbf =  𝑘(𝒙𝑛, 𝒙𝑚) = 𝑒−𝛾‖𝒙𝑛−𝒙𝑚‖2
.  The SVM decision boundary is based on 

the samples corresponding to 𝛼𝑛 ≠ 0 (i.e., support vectors).  A typical solution often 

contains many 𝛼𝑛 = 0. The prediction for an arbitrary sample x ∈ 𝑅𝐷 can be made by 

evaluating the decision function (i.e., signed distance between the sample x and the 

decision boundary) 

 

where the bias b can be computed by 

 

The class label for x predicted is �̅�= sign( f (x)). 

Quantum SVM  

The DW2000Q QA requires the SVM training to be formulated as a Quadratic 

Unconstrained Binary Optimization (QUBO) problem which is defined as the minimization 

of the energy function: 

 

with 𝑎𝑖 ∈ {0, 1} the binary variables of the optimization problem, and Q the QUBO weight 

matrix (i.e., an upper-triangular matrix of real numbers).  Since the solution of Eqs. (1)-(2) 
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consists of real numbers 𝛼𝑛 ∈ R and Eq.(4) can only computes discrete solutions, the 

following encoding is used: 

 

where 𝑎𝐾𝑛+𝑘 ∈ {0, 1} are binary variables, K is the number of binary variables to encode 𝛼𝑛, and B is the base used for the encoding.  The formulation of the QP of Eqs. (1)-(2) as 

QUBO is obtained through the encoding of Eq. (6) and the introduction of a multiplier ξ to 

include the first constraint of Eq. (2) as a squared penalty term: 

 

where �̃� is a matrix of size KN × KN given by 

 

Since �̃� is symmetric, the upper-triangular QUBO matrix 𝑄 is defined by 𝑄𝑖𝑗 = �̃�𝑖𝑗 + �̃�𝑗𝑖 
for i < j and 𝑄𝑖𝑖 = 𝑄𝑖�̃�.  The second constraint of Eq. (2) is automatically included in Eq. (8) 

through the encoding given in Eq. (6), since the maximum for 𝛼𝑛 is given by 

 

The last step required to run the optimization on the DW2000Q QA is the embedding 

procedure.  This is necessary because the QUBO problem given in Eq. (5) includes some 

couplers 𝑄𝑖𝑗 ≠ 0 between qubit i and qubit j for which no physical connection exists on the 

chip (i.e., constraint of the Chimera topology of the DW2000Q quantum processor). The 

embedding increases the number of logical connections between the qubits. When no 

embedding can be found, the number of nonzero couplers 𝑛𝑐𝑝𝑙 is the parameter that can 

be reduced until an embedding is found.  The DW2000Q QA computes a variety of close-
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to-optimal solutions (i.e., different coefficients {𝛼𝑛}(𝑖) obtained from Eq. (6)). Many of 

these solutions may have a slightly higher energy than the global minimum {𝛼𝑛}∗ that can 

be found by the classical SVM.  However, these solutions can still solve the classification 

problem for the training data.  For each run on the DW2000Q QA, the 20 lowest energy 

samples from 10,000 reads are kept. 

 

Quantum SVM: Training Phase  

To overcome the problem of the limited connectivity of the Chimera graph of the 

DW2000Q QA the whole training set is split into small disjoint subsets (𝐷)(𝑡𝑟𝑎𝑖𝑛,𝑙) of 40 

samples, with l = 0, .., int(N/40).  The strategy is to build an ensemble of quantum weak 

SVMs (qeSVMs) where each classifier is trained on (𝐷)(𝑡𝑟𝑎𝑖𝑛,𝑙). This is achieved in two 

steps.  First, for each subset (𝐷)(𝑡𝑟𝑎𝑖𝑛,𝑙) the twenty best solutions from the DW2000Q QA 

(i.e.,qSVM(B, K, ξ, γ)#i for i = 0, ..., 19) are combined by averaging over the respective 

decision function 𝑓𝑖,𝑗(𝒙) (see Eq. (3)). 

 

Since the decision function is linear in the coefficients and the bias 𝑏(𝑙,𝑖)
 is computed from 𝛼𝑁(𝑙,𝑖)

 via Eq. (4), this procedure effectively results in one classifier with an effective set of 

coefficients 𝛼𝑁(𝑙)
 = ∑ 𝛼𝑁(𝑙,𝑖)/𝑖 20 and bias 𝑏𝑙 = ∑ 𝑏(𝑙,𝑖)𝑖 /20. Second, an average is made over 

the int(N/40) subsets.  Note, however, that the data points (𝒙𝑁(𝑙)
 , 𝒚𝑁(𝑙)

) ∈ (𝐷)(𝑡𝑟𝑎𝑖𝑛,𝑙) are 

now different for each l. The full decision function is 

 

where 𝑏  = ∑ 𝑏(𝑙)𝑙 /𝐿.  As before, the decision for the class label of a point x is obtained 

through 𝑡̅ = 𝑠𝑖𝑔𝑛(𝐹(𝒙)). 
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Key Performance Parameter Comparison 

Metrics Output Examination for Objectives 1:  the Autoencoder 

Let’s quickly look at the reconstruction scores 

 

 

Table 1  Reconstruction Score and Statistics 

     

Figure 16  Histogram of Reconstruction Scores 

We now use the y labels just in the process of score validation.  We map a value of ‘normal’ to 0 and ‘anomalous’ to 1.  

If you recall in the preprocessing, normal had a value of 11, and anomalies had all other values between 0 and 22. 

 

 

# store the reconstruction data in a Pandas dataframe 

anomaly_data = pd.DataFrame({'recon_score':reconstruction_scores}) 

# if our reconstruction scores our normally distributed we can use their statistics 

anomaly_data.describe() 

binary_labels = convert_label_to_binary(le, y_test) 

 

# add the binary labels to our anomaly dataframe 

anomaly_data['binary_labels'] = binary_labels 

 

# let's check if the reconstruction statistics are different for labeled anomalies 

# convert our labels to binary 
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Figure 17  Values of key statistics for normal and anomalous samples 

 

We can see from Figure 17 above that the anomalous data has a mean reconstruction 

score of 0.05 while the normal data has a score of ~0.004. This is a good sign that our 

autoencoder has learned to reconstruct normal data but fails to reconstruct anomalous 

data. 

 

1.000 

We are able to generate a perfect AUC score. 

 

So we know there is almost an order of magnitude difference in reconstruction error 

between normal and anomalous samples.  But what is the optimal dividing point between 

the means of the two groups?  There are number of ways to set thresholds. We give two 

examples below: 

 

0.0342 

#Let’s compute the Area Under the Curve 

fpr, tpr, thresholds = roc_curve(binary_labels, reconstruction_scores) 

roc_auc = auc(fpr, tpr) 

print(roc_auc) 

 

# We can pick the threshold based on maximizing the true positive rate (tpr)  

# and minimizing the false positive rate (fpr) 

optimal_threshold_idx = np.argmax(tpr - fpr) 

optimal_threshold = thresholds[optimal_threshold_idx] 

print(optimal_threshold) 
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0.04566 

 

Analyzing the confusion matrix, we see that we get optimal results.  The algorithm is 

labeling most of the normal data and anomalous data correctly while mislabeling very 

infrequently. 

 
Figure 18  The Confusion Matrix for 1% Anomalies 

 

We have a handful of performance metrics available to us for comparison.  These include:  

Sensitivity = TP/(TP+FN) = 243076/(243076+85) = 0.999 

Precision = TP/(TP+FP) = 243076/(243076+241) =  0.999 

Specificity = TN/(TN+FP) = 2225/(2225+241) = 0.902 

Accuracy = TP+TN/(P+N) = (243076+2225)/( 243076+2225+241+85) =  0.998 

F1 Score = 2TP/(2TP+FP+FN)= 2*243076/(2*243076+241+85) = 0.999 

Inferences per second = 126,000 

The 5% Anomaly Case for Autoencoders 

# Or we assume our reconstructions are normally distributed and label anomalies as those 
# that are a number of standard deviations away from the mean 
recon_mean = np.mean(reconstruction_scores) 
recon_stddev = np.std(reconstruction_scores) 
 
stats_threshold = recon_mean + 5*recon_stddev 

print(stats_threshold) 
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Now we will examine the AE performance when the anomaly rate is 5%.  First, we print 

the reconstruction scores from the 5% data 

Table 2  AE Reconstruction Statistics for 5% Case 

     

Figure 19  Histogram with 5% anomaly rate 

Then we print the mean reconstruction error score and other statistics for the normal and 

anomalous data samples in Table 3.  At first glance, there appears a wide separation 

between the mean reconstruction errors for normal and anomalous samples (.00516 

versus .0214 for an anomaly) and this looks like the separation in the 1% case, but that 

case is actually (.0043 versus .054) more separated. 

Table 3  Reconstruction Error Statistics For 5% Anomaly Rate (Normal=0, Anomaly =1) 
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Figure 20  ROC for 5% Anomaly Data Set   

With a little bit of manipulation, we can maximize the True Positive Rate for a given 

threshold while minimizing the False Positive Rate (FPR). 

 

 
 

We use the second threshold and generate a new confusion matrix. 

# We can pick the threshold based on maximizing the true positive rate (tpr)  

# and minimizing the false positive rate (fpr) 

optimal_threshold_idx = np.argmax(tpr - fpr) 

optimal_threshold = thresholds[optimal_threshold_idx] 

print(optimal_threshold) 

0.005237637 

# Or we assume our reconstructions are normally distributed and label anomalies as those 
# that are a number of standard deviations away from the mean 
recon_mean = np.mean(reconstruction_scores) 
recon_stddev = np.std(reconstruction_scores) 
stats_threshold = recon_mean + 5*recon_stddev 
print(stats_threshold) 
0.0487624048255384 

 



45 
 

UNCLASSIFIED 

 

Figure 21  Confusion Matrix for 5% Anomaly Rate 

 

Comparing the off-diagonal terms with the 5% Anomaly Rate in Figure 21, the number of 

normal samples labelled as Anomalies is 36 and the number of Anomalies labelled as     

normal is 9466.  Compare this to the 1% rate of 85 and 241.  Taking normal samples as  

positives and anomalies as negatives, we see that the false positive rate is almost 40   

times higher!  And from the ROC curve, we see that the AUC drops significantly to 0.77  

from a perfect score of 1.0. 

 

This leads us to a very important take-away:  in support of autoencoders, it is a truly        

unsupervised method.  However, the classifier performance is a strong function of the      

anomaly rate in the data.  This should make intuitive sense--the job of the autoencoder is 

to learn to reconstruct the samples provided in the training data.  If too many of those  are 

both normal samples and anomaly samples, then the AE will begin to be able to                

reconstruct some anomalies with errors that are closer to that of normal samples.  This is 

then a double-edged sword as it’s true that it’s unsupervised, but there are key                 

hyperparameters such as base rate which have to be learned in the model validation       

stage to find the optimum performance. 

 

Comparing Figure 16 and Figure 19, one sees that there looks like a larger separation     

between the normal and anomalous samples for the 5% case. But what has happened is  
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that many more of the anomalies are closer to the mean of the normal sample and this is 

what drives the factor of 40. 

Metrics Output Examination for Objective 2:  the GAN 

Let us calculate the mean score for normal and anomalous samples in our test set. 

Ideally, we would like to see a score close to 1 for normal samples and 0 for anomalous 

samples. This would mean our classifier is doing well in distinguishing between the 2 

classes. 

 

 

Mean score for normal packets : 0.998 

Mean score for anomalous packets : 0.0853 

 

Note that these scores are very close to 1 for normal packets and close to .08 for 

anomalous packets which is a very encouraging result.  But how exactly do we identify 

our Anomalies? 

Although there are several ways to do this, let us use a more straightforward way for 

detection. Remember 1% of our test set comprised of anomalies. So, the lowest 1% of 

the scores should ideally constitute anomalies. Let us test our hypothesis below. 

pd.options.display.float_format = '{:20,.7f}'.format 

results_df = pd.concat([pd.DataFrame(results),pd.DataFrame(y_test)], axis=1) 

results_df.columns = ['results','y_test'] 

print ('Mean score for normal packets :', results_df.loc[results_df['y_test'] == 0, 'results'].mean() ) 

print ('Mean score for anomalous packets :', results_df.loc[results_df['y_test'] == 1, 'results'].mean()) 
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Figure 22  Confusion Matrix for GAN Test Results 

 

We calculate several metrics based on the confusion matrix. 

Accuracy Score : 0.9989 

Precision : 0.9503 

Recall : 0.9469 

F1 : 0.9486 

 

#Obtaining the lowest 1% score 

per = np.percentile(results,1) 

y_pred = results.copy() 

y_pred = np.array(y_pred) 

#Thresholding based on the score 

inds = (y_pred > per) 

inds_comp = (y_pred <= per) 
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All of these results are excellent.  And in the Figure 23 below, we see the Area Under the 

Curve is .97. 

 
Figure 23  The GAN ROC and AUC 
 

Results for 5% Anomaly Rate with GAN 

 

 

Figure 24  Training Losses with Batch Number with 5% Anomaly Training Data 

 

The figure above in Figure 24 shows that the generator seems to have less batch to batch 

variation than in the 1% case.  When we look at the end results, we find that the 

normal/anomalous sample mean is: 

 

Mean score for normal packets : 0.9994 
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Mean score for anomalous packets : 0.3199 

 

The normal score is still excellent and in line with the 1% results.  But the anomalous 

packet results have come up considerably from their .08 mean score with the 1% training. 

 

 

Figure 25  Confusion Matrix for GAN Testing with 5% Anomaly in Test Data 

 

Here are some key metrics for 5% generated from the confusion matrix above in Figure 

25: 

Accuracy Score : 0.9757 

Precision : 0.9895 

Recall : 0.4979 

F1 : 0.66249 

 

GAN Performance Summary 
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 We successfully employed state of the art Generative Adversarial Networks for 

anomaly detection on high dimensional data such as the KDD dataset. 

 The GAN is particularly interesting because it sets up a supervised learning problem in 

order to do unsupervised learning. While it generates fake data and tries to determine 

if a sample is fake or real based on trivial labels, it really does not know what the 

different classes in the dataset are. 

 On the downside, GANs can be tough to train and suffer from convergence issues 

particularly because the discriminator during training does not learn as much from the 

true dataset as it learns to distinguish between the probability distributions. 

 What these numbers suggest is that as the anomaly rate increases, there is very little 

change in performance in the discrimination of normal packets from anomalous          

packets.  However, we see that many more anomalous packets are classified as        

normal.  The results are still better on the whole than the autoencoder, however there  

is performance degradation. 

 

Metrics Output Examination for Objective 3: the SVM QUBO 

We have a similar performance metrics available to us for comparison.  To calculate 

them, we must convert SVM hyperplane distances to posterior classification probabilities 

via Platt Scaling.  These include:  

1. Confusion matrix  
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Figure 26  SVM QUBO Confusion Matrix 

2. Accuracy:  .954 

3. Precision:  .9998 

4. Sensitivity or Recall:  .9540 

5. Matthew’s Correlation coefficient:  .976  

6. ROC Curve and AUC:  .972  

 

Figure 27  QUBO SVM ROC Curve 

  

7. Wall time for processing packets in inferences per second:  1.85M 
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Conclusion 

Key Findings & Implications  

The work under the CRADA validated Entanglement’s capability to solve cybersecurity 

anomaly detection three orders of magnitude faster than traditional methods, and with 

better performance as measured by Key Performance Parameters (KPP’s) that covered 

metrics related to total inferences per second, accuracy, sensitivity, specificity, precision, 

F1 score, ROC and AUC values.  The values being produced on the test data sets and 

shown in Table 4 imply a dramatic reduction in false positives-- requiring less human 

intervention to remove from the investigation queue. 

Table 4  Cumulative Metrics for 3 Approaches 

 Accuracy Sensitivity Specificity Precision F1 score AUC Inferences/sec 

Autoencoder 0.998672 0.9996504 0.902270 0.9990095 0.999 1.0 ~70M 

GAN 0.9989 0.9468 0.94687 0.95034 0.94860 .97 ~70M 

QUBO SVM 0.95397 0.95403 0.89339 0.9998 .9800 .972 ~1.85M 

 

With additional variables or larger datasets, the Entanglement capability offers greater 

throughput and efficiency than traditional methods and can solve typically intractable 

problems at scale. Previous AAG efforts showed the ability to detect 120,000 inferences 

per second. This was the metric used as the benchmark and standard achievable using 

both the Groq tensor processing unit architecture and the Quadratic Unconstrained Binary 

Optimization (QUBO) model architecture. Within six months Entanglement was able to 

achieve an anomaly detection rate of 72,000,000 inferences per second, and it 

demonstrated the potential to achieve 120,000,000 inferences per second across a wide 

domain of data processing systems. The proprietary quantum-inspired chip solution can 

scale out to cards, nodes, and beyond. Additionally, the existing solution validated by the 

CRADA is already in development for next generation updates that will improve 

modularity and reduce heat signatures. 
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Recommendations 

Moving forward, further validation on Elastic logfiles recorded in an actual SOC 

environment need to be processed and run through each of the three available methods 

and key performance parameters measured and reported.  We are working toward this 

goal currently. 

The second recommendation, which is discussed in detail in the next section, is to 

investigate the application of the Entanglement solution on the ability to transform generic 

logfiles from any vendor into true cybersecurity data pipelines with Named Entity 

Recognition (NER) applied prior to entering into the AI/ML stage for use cases such as 

anomaly detection, lateral movement detection, sensitive information discovery, or digital 

fingerprinting. 

Limitations and Opportunities 

There are two current limitations.  The first, which is only a matter of time and not 

technology or engineering, is demonstration that these algorithms work with log files 

found in typical SOC’s such as those from ArcSight and Elastic.  The second is the 

generation of cybersecurity pipelines from general feeds and log file streams.  We have 

not yet merged a generalized Natural Language Processing (NLP) technology with the 

model algorithms and HW advancements for the sake of building generic cybersecurity 

pipelines.  This becomes extremely valuable in the creation of Named Entity Recognition 

from unstructured network activity log files.  And speaking of models, we continue to use 

more and more complex models in production deployments.  Just look at the emerging 

trend of viewing cybersecurity as a natural language problem. But how do you get these 

more complex models into a production environment and keep them updated?  We 

believe the Morpheus SW framework addresses these challenges for both today and 

tomorrow in helping to ingest logfiles from multiple sources such as Arcsight, Elastic, etc. 

Log Parsing is the First Step in Cybersecurity 
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What Are Machine Logs? 

Machine logs are generated by appliances, applications, machinery, and networking 

equipment, (switches, routers, firewalls, etc.) Every event, along with its information, is 

sequentially written to a log file containing all of the logs. Although some logs are written 

in a structured format (e.g JSON, XML), many applications write logs in an unstructured, 

hard-to-digest way. 

 

Before Mining Logs, We Must Parse Them 

We can use artificial intelligence techniques on logs to detect cybersecurity threats within 

the network, but we must first take the raw, unstructured logs, and transform them into an 

easily-digestible, structured format. This transformation is called “log parsing”, where all 

the different entities, or “fields”, are extracted from unstructured text. This nice structured 

data can then be fed into downstream cybersecurity pipelines.  For example, the image 

below in Figure 28 shows the desired input for a log parser (an unstructured log), and its 

output (a structured map from field name to its value): 

 
Figure 28  Log file transformation pipeline 

 

The log parser is extracting the following fields: timestamps, dvc (device number), IP 

addresses, port numbers, etc. 

 

Given the volume (petabytes per day) and value of the data within machine logs, log 

parsing must be scalable, accurate, and cost efficient. Historically, this has been solved 

using complex sets of rules, but new approaches, combined with increases in 

computational power, are enabling fast log parsing using neural networks, providing 

significant parsing advantages.  
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Traditionally, log parsing has been done with regular expression matching, called 

regexes. While this was a great initial solution, regexes come with several big challenges: 

1. Writing a set of regexes in the first place is hard. They must not be overly or too 

loosely constrained, making it extremely difficult to write hundreds of regexes while 

keeping an appropriate constraining balance. 

 

2. It is hard to manage regexes for every application and its version. 

 

3. Regexes easily break when there is even a slight variation in the input. This can 

happen because of log format changes, bugs, software updates, etc. 

 

4. It can be more computationally expensive to run hundreds of regexes over every 

log than running a machine learning model a single time. 

 

Alternatively to regexes, machine learning models are easier to train and manage and 

are more robust to changes in the underlying logs.  This can be attributed to the 

representation power of ML models, as well as the similarities in the logs generated by 

different applications. As an example, consider the similarities between Hadoop and 

Spark logs below in Figure 29: 

 

Figure 29 Hadoop and Spark logfile comparison 
 

Although the values may vary across different log types, many fields are still shared. One 
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can take advantage of this similarity to build robust ML models with a deeper 

understanding of machine logs. 

Solving Log Parsing With ML 

We first wondered: how much benefit is there to using ML, and what is the best way to 

model this problem? 

 

Why Template-Generation Algorithms Don’t Solve Our Problem 

We started by experimenting with unsupervised, template-based log parsing algorithms 

like Drain and Spell, which automatically generate a set of “templates”, or regular 

expressions, that can parse logs. These templates have a set of “wildcards” denoted by 

<*>, which represents the location of a variable token within the log. 

 

Since these approaches are unsupervised, additional manual work is required to map 

from fields to one or more wildcards. For example, the first wildcard in each template 

above should be labeled as “timestamp,” but Drain and Spell cannot produce a label for 

these wildcards, since the field names do not appear in the logs. 

 

If the number of templates were small, a human could manually label each wildcard. 

However, because the number of templates and wildcards can grow linearly with respect 

to the number of logs, this approach quickly becomes infeasible. 

 

The graphs below in Figure 30 plot the number of unique templates (in blue) and the 

number of wildcards (in orange) generated by Drain vs. the number of events seen. We 

about:blank
about:blank
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can see the number of wildcards increasing linearly: 

 

Figure 30  Wildcards and templates versus events 

 

Beyond the fact that template-based algorithms produce too many templates and don’t 

produce labeled fields, a deeper issue is that these approaches are not truly learning 

algorithms in that (1) they don’t necessarily get better with more data, and (2) there is no 

practical way to tune them to specific datasets. In fact, as we see in the graphs above, the 

number of templates proliferates with more data, leading to issues with noise, rather than 

stabilizing as a complete representation is learned.  In addition, some extracted fields and 

templates might be rare and require more examples, while some are common and easier 

to extract, but these algorithms aren’t able to learn this or to treat these cases differently.  

While these algorithms do not solve the problem, they can be used for log clustering, 

which has many other valuable applications. 

Shifting to Named Entity Recognition 

 

 
Figure 31  Cisco firewall logfile example 
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Since template-based algorithms didn’t solve the problem, we shifted our focus to the 

natural language processing task of named entity recognition (NER). Supervised NER 

models do exactly what we need: they find entities (“fields”, in our case) within the text. 

Above, we can see an example output from an NER model for Cisco ASA firewall logs in 

Figure 31. 

 

It is a potentially valuable exercise to determine the feasibility of running Long Short Term 

Memory (LSTM) and transformer-based (BERT and GPT-3 for example) NLP on the Groq 

HW.  If this is feasible, we now have from raw input to algorithm output an optimized 

processing chain with limited to no bottlenecks.  Investigation into this possibility should 

be made a priority after completion of the algorithmic validation with Elastic log files is 

completed. 

Additional Pathways 

The type of algorithms and artificial intelligence-based processed performed under the 

CRADA Cybersecurity anomaly and outlier detection can be applied to many U.S. 

Government agencies for:  

1. Generalized Artificial Intelligence through the use of Reinforcement Learning 

2. Data Observability applications 

3. Anomaly and Outlier detection for IT infrastructure 

4. Sensitive Information Detection and Digital Fingerprinting 

5. Application and user behavior deviations 

6. Insider Threat Detection 

7. Financial Risk Mitigation and Planning for multiple assets classes (i.e. energy,  

fuel, supply chain, etc) 

8. Medical & Cancer research 

9. 5G/RF: (a) reduction of antenna noise; (b) accelerate beam forming with added 

intelligence 

10. Deep space operations and scheduling 
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11. Optimized Artificial Intelligence for UAVs 

12. Large scale conditional logistics and scheduling in real-time (JADC2, Project 

Convergence, ABMS, Project Overmatch) 

13. Data Residency 

14. Community Detection (transportation/logistics, suicide prevention, find and detect 

adversaries) 

15. Accelerated weather and climate modeling and prediction 

16. Optimization of networks and network traffic 
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